Copyright © 2018.

A limited Right To Use is hereby
iWay Technology LLC

granted for personal educational use.
Boulder, Colorado USA

http://www.iwaytechnology.com

Java Inter-App Communication & The Orderly Shutdown Pattern
John Thompson – iWay Technology Company -- See Sample Code At http://www.iwaytechnology.com/jt/
Java's innate features (e.g., networking, multithreading) facilitate inter-app communication. We'll review these features then use them to illustrate an Orderly Shutdown Pattern for server-app control. Note: This Intro session will not address RMI, JMS, or other advanced Java technologies.

Outline

I. Networking Basics

II. Java Language Networking Features

III. Inter-App Communication Example

IV. Multi-Threading Basics

V. Threading Java Language Features

VI. Multithreaded Inter-App Communication Example

VII. Summary

I. Network Basics

A. Background

Java is centered on the TCP/IP Networking Model (vs. the OSI, Open Systems Interconnection, Reference Model). The IP portion (Internet Protocol) defines how packets are constructed, and defines a machine addressing scheme. The TCP portion (Transmission Control Protocol) adds elements to allow reliable delivery, data integrity, and packet ordering.

By contrast, UDP/IP (User Datagram Protocol), another IP protocol, is an “unreliable” protocol, though still highly useful in selected applications where some lose of data may be inconsequential (audio, video, etc.).

Each computer on the Internet (or private network) must have a unique address. In IP, machine addresses are represented by four-byte values – IP Addresses. Example: 192.168.9.90.

Within a machine, there are 64K Ports available. Multiple ports on a single machine allow different applications, such as email (port 25), http(80), ftp(21), ping(7), to communicate independently with the outside word.

B. Client/Server Basics

Once upon a time, client meant desktop, and server meant data-center machine. With n-tiered architectures prevalent, who’s a client and who’s a server has become muddled. (Peer-to-peer is an alternative to client/server, and not considered here.)

Definition: Clients initiate connections; Servers listen for and respond to connection requests.

Detail: Servers listen on a documented port; clients connect to that port initially. The server then typically switches the conversation over to a different available and undocumented port, freeing the documented port for further connections.

Example client/server conversation: Apache web server talks to Netscape Navigator browser.

II. Java Language Networking Features

A. Sockets and ServerSockets

A Server App constructs a ServerSocket and sets it in a listening mode – awaiting client connections. Once a connection is made, the ServerSocket returns another client socket to the server app code to manage the server side of this conversation.

Example:

// Server code

java.net.ServerSocket server = new java.net.serversocket(1789);

java.net.Socket client = server.accept(); // normally blocks

B. Addresses

Server sockets, by definition, run “locally” and thus are not constructed with an IP address. But, they do require a designated port (Unix - above 1024 for non-root processes).

Client sockets require an IP address and port to connect to (this couplet defines the socket, uniquely, on a network). Connecting to a server on the same machine allows use of the special IP address localhost, but the port is still required.

// Client code – localhost => same machine

java.net.Socket client = new java.net.Socket(“localhost”, 1789);

C. Streams

Following the Unix model, socket I/O is similar to other Java I/O. Client sockets use InputStream and OutputStream objects for communication. The flush() method is important in network I/O.

// Client code

OutputStream out = client.getOutputStream();

out.write(. . .);

out.flush(); // flush buffer

III. Java Inter-App Communication Example

A. The Server Code

A server listens for connections and responds when contacted

// Create a server socket to listen for connections
java.net.ServerSocket server = new ServerSocket(PORT);

// accept() blocks til client request, then creates new
// socket on which to conduct client conversation.
java.net.Socket client = server.accept();

java.io.InputStream in = client.getInputStream();

byte[] inputStringBytes = new byte[256]; // Big enough?
int inputLen = in.read(inputStringBytes);

System.out.println("\nServer received: " +
 new String(inputStringBytes, 0, inputLen));

B. The Client Code

A client must know the IP address and port of the service app.

// Connect to server on same machine, documented port
java.net.Socket client = new Socket("localhost", PORT);

java.io.InputStream in = client.getInputStream();
java.io.OutputStream out = client.getOutputStream();

out.write(new String("Hello, Server.").getBytes());
out.flush();

C. Server Output -

Server received: Hello, Server

D. Example: run “portcomm” (Sample Code at http://www.iwaytechnology.com/jt/)
IV. Multi-Threading Basics

A. Background

Multithreaded code allows concurrency of execution without the “heavy weight” of multiple processes. Multiple threads are either swapped on and off the cpu, or may run concurrently on multiple-cpu boxes.

All threads in an app can share the same basic process resources – file handles, heap memory space, the resources of the JVM. Each thread has its own program counter and its own stack memory for local data (non-static).

Since threads share much of the environment, synchronization of access to various resources and code segments is necessary. Synchronization can be thought of as “single-file” access … one at a time.

Another key thread synchronization concept is thread shutdown. Controlling threads should normally join (wait for termination) with threads they’ve stopped, to insure proper thread completion.

B. Classic Concurrency Problem

The statement k++ may not be thread-safe (depending on k). Consider the machine-language implementation –

· fetch k from memory to register

· increment k in register

· store k from register to memory.

Now, consider two threads, each accessing k. There is a timing issue.

[image: image4.png]

If Thread 1 does not get its new value stored before Thread 2 fetches k from memory, the result of two iterations of k++ (one per thread) will be as if only one iteration occurred. The solution is to make sure T1 is not interrupted between time 1 and time 5.

V. Java Language Threading Features

A. Threads and Runnables

There are two related ways to create threads in Java. One is to extend the class java.lang.Thread. The other is to implement interface java.lang.Runnable in your class and give an instance to a Java Thread. Either way, a run() method executes once the Thread’s start() method is called.

The keyword synchronized protects blocks of code, or methods, from being executed by more than one thread at a time. Method join() is another important synchronization device.

B. Threads – The Conceptual and Semantic Challenge

A Java Thread object is similar to any instance – instantiated and managed by the ClassLoader like any other object.

An OS Thread is an operating system construct that manages the execution of the code in a Java Thread’s run() method.

Once the OS Thread terminates, the Java Thread object remains. Its methods can be invoked, giving access to member data from its execution.

C. Example: run “multithreading”
[image: image2.png]multithreading
(red indicates O thread)

VI. Multithreaded Inter-app Communication: The Orderly Shutdown Pattern

A. What is a Pattern?

There are differing opinions … notes from Deepak Alur, et al, Core J2EE Patterns.

“A recurring solution to a problem in a context.”

Patterns

· Are observed through experience

· Prevent reinventing the wheel

· Exist at different levels of abstraction – eg, design, architectural, analysis, creational, structural, behavioral

· Are reusable artifacts

· Undergo continuous improvement

· Communicate designs and best practices

· Can be used together to solve a larger problem.

During pattern identification, we may observe differing implementation strategies, but where the solutions are similar a pattern may lurk.

Patterns vs. Strategies

· Patterns exist at a higher level of abstraction than strategies.

· Patterns include recommended implementations as strategies.

· Strategies provide an extensible point for patterns – new implementation strategies emerge over time.

B. Pattern Template

A standardized way to document multiple patterns.

Context – Server application conducting integral units of work that must not be interrupted (akin to the database concept of Atomic operation).

Problem – How to shutdown the server app without interrupting app during a critical phase (within some unit of work that would be hard to recover from if disrupted).

Forces –

· Unix offers “signals,” Windows-NT offers “Services” – each a platform-dependent device.

· Java “… run anywhere” begs for a platform-independent approach.

· Java language has necessary features and constructs to support a solution.

Solution – Use Java networking and threading features to implement a portable reusable design pattern.

-- Strategies – Different strategies relate to the level of encapsulation of functional pieces, and the amount of multithreading in the solution. (For example, while there must be a thread blocking on a SeverSocket.accept() call, there may or may not be additional worker threads that must be notified that it’s time to quit – SeverSocket.setSoTimeout() allows other strategies.)

-- Structure – Sequence diagrams

Consequences – More threading increases complexity, albeit along fairly standardized lines. Worker threads allow encapsulation and scalability of function without additional design burden or code complexity.

Sample Code – See running examples portmanager-basic and portmanager-full.

(Sample Code at http://www.iwaytechnology.com/jt/)
[image: image3.png]myserver

! |accept)
locked

warking

warking
myserver
fstop)

|
|
|
|
|
P H
sendTerm()
term()
tem() [[, |
jon0) ||
———
oin() 1
RN PR
kill()
— ||

o

(@)

join()

—__|——|=

Example: portmanager-full
(red indicates OS thread)

VII. Summary

The Java specification has features that go beyond those of many other “high-level” languages, including multithreading and networking. The existence of these extended features simplifies many programming tasks and, in fact, aids in the specification of yet far more advanced platform technologies such as RMI, JMS, EJB, etc.

While J2EE technologies offer powerful solutions for many tasks, Java’s basic features can be leveraged to solve complex problems outside the domain of application servers and related tools. This allows powerful server apps to be developed, as appropriate, without the complexity, cost, and processing burdens of application server-based solutions.

Biography

John Thompson is a Boulder, Colorado, consultant with decades of experience in the business and development of software. He has produced over 150,000 lines of production server-side Java for his own and other businesses.

His business interests include aiding companies that face the challenge of software delivery. His technical interests include delivering specific functionality of demonstrable quality on a timeline.

For aid in deploying to this license fee-free Open Source platform, contact John at jt@iwaytechnology.com or http://www.iwaytechnology.com.

See Sample Code at http://www.iwaytechnology.com/jt/

[image: image1.png]™

load k
toreg

incrk

TIME

store k

2

5

T2

load k
toreg

incrk

store k

 ... built to travel the information superhighway.tm
Page 5 of 5

